
CALCULATION OF A TWO-PHASE DYNAMIC LAMINAR
BOUNDARY LAYER AND A THERMAL LAMINAR BOUNDARY
LAYER ON A PLATE

A. P. Vasil’ev UDC 536.24:621.1

The approximate method of calculation of a bubble boundary layer based on the integral relations for mo-
mentum and energy is proposed. The corresponding equations are derived and results of the numerical inves-
tigation of heat exchange are given.

Consideration is given to the flow of a viscous conducting fluid with monodisperse ideal-gas bubbles in
crossed homogeneous magnetic fields and electric fields. The effects of adhesion, fragmentation, and interaction be-
tween the bubbles, the energy of their random motion, and the capillary effects at the phase boundary are disregarded.

Of interest for engineering calculations are problems of flow past a solid surface and of heat exchange on it
which can be solved within the framework of the notions of a boundary layer [1].

The approximate method of calculation of such flows is based on the employment of integral relations for
momentum and energy [2] which have distinctions from their single-phase analogs as applied to two-phase flows. We
derive these relations for laminar flow on a plane surface.

Having evaluated the order of terms in the equations of the momenta of the phases, for a plane steady-state
flow on the plate vi = 



ui, vi, 0




 we obtain

∂
∂x

 (ρ1u1) + 
∂
∂y

 (ρ1v1) = 0 , (1)

∂
∂x

 (ρ2u2) + 
∂
∂y

 (ρ2v2) = 0 , (2)

ρ1u1 
∂u1

∂x
 + ρ1v1 

∂u1

∂x
 = − α1 

∂p

∂x
 + f1x − F12x + 

∂τ1

∂y
 , (3)

ρ2u2 
∂u2

∂x
 + ρ2v2 

∂u2

∂x
 = − α2 

∂p

∂x
 + F12x . (4)

In these equations, F12x is the force of interaction between the phases caused by their velocity nonequilibrium and de-
termined by the force-interaction model (electromagnetic expulsion, resistance to flow, the Magnus or Zhukowski force,
the virtual-inertia force, etc.) [3].

In the case where the transverse forces are absent because of the velocity nonequilibrium the system of equa-
tions (1)–(4), by the methods of boundary-layer theory, is reduced to the form [4]

∂
∂x

 [ρ1u1 (U1 − u1)] + 
∂
∂y

 [ρ1v1 (U1 − u1)] + ρ1 (U1 − u1) 
dU1

dx
 = − ∆F12 − 

∂τ1

∂y
 ,
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∂
∂x

 [ρ2u2 (U2 − u2)] + 
∂
∂y

 [ρ2u2 (U2 − u2)] + ρ2 (U2 − u2) 
dU2

dx
 = ∆F12 .

Integrating these equations across the dynamic boundary layer between the limits from y = 0 to y = δ(x) with
allowance for the rule of differentiation of the integral with respect to the parameter with a variable upper limit [5]
and for the condition at the boundaries of the boundary layer

y = 0 :   u1 = 0 ,   u2 = 0 ,   τ1 = τ1w ,   v1 = 0 ,   v2 = 0 ;

y = δ (x) :   u1 = U1 ,   u2 = U2 ,   v1 = 0 ,   v2 = 0 ,   τ1 = 0

we obtain

d

dx
  ∫ 

0

δ(x)

 ρ1u1 (U1 − u1) dy + 
dU1

dx
  ∫ 

0

δ(x)

 ρ1 (U1 − u1) dy = τ1w −  ∫ 
0

δ(x)

 ∆F12 dy ,

d

dx
  ∫ 

0

δ(x)

 ρ2u2 (U2 − u2) dy + 
dU2

dx
  ∫ 

0

δ(x)

 ρ2 (U2 − u2) dy =  ∫ 
0

δ(x)

 ∆F12 dy .

We introduce the following notation:

δ1
∗∗

 =  ∫ 
0

δ(x)

 α1 
u1

U1
 



1 − 

u1

U1




 dy ,   δ2

∗∗
 =  ∫ 

0

δ(x)

 α2 
u2

U2
 



1 − 

u2

U2




 dy , (5)

δ1
∗
 =  ∫ 

0

δ(x)

 α1 



1 − 

u1

U1




 dy ,   δ2

∗
 =  ∫ 

0

δ(x)

 α2 



1 − 

u2
U2




 dy (6)

i.e., the momentum thicknesses in the phases δi
∗∗  (5) and the displacement thicknesses δi

∗  (6) respectively. The integral
relations for the momenta in the phases take the canonical form

d

dx
  ρ1

0
U1

2
 δ1
∗∗ 
  + ρ1

0
U1 

dU1

dx
 δ1
∗
 = τ1w − ∫ 

0

δ

∆F12 dy ,

d

dx
  ρ2

0
U2

2
 δ2
∗∗ 
  + ρ2

0
U2 

dU2

dx
 δ2
∗
 = ∫ 

0

δ

∆F12 dy .

We employ the ratio of the phase velocities in the potential part of the flow U2
 ⁄ U1 = S, i.e., the slippage

coefficient of the phases, and ρ1
0 ⁄ ρ2

0 = ρ∗ , i.e., the reduced density. Then, adding together the previous equations, upon
certain transformations we obtain the integral relation for the entire mixture

dδ∗∗

dx
 + (2δ∗∗  + δ∗ ) 

U1
′

U1

 + 
δ∗

ρ∗
 SS

′
 = 

τ1w

ρ1
0
U1

2 , (7)

where the prime denotes the derivative with respect to x and the displacement thickness δ∗  and the momentum thick-
ness δ∗∗  for the mixture are determined by the following expressions:
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δ∗∗  = δ1
∗∗

 + S
2
 
δ2
∗∗

ρ∗
 ,   δ∗  = δ1

∗
 + S

2
 
δ2
∗

ρ∗
 . (8)

A distinctive feature of the integral relation (7) is that all the diversity of the force interaction between the
phases in their velocity nonequilibrium is taken into account in it in terms of the characteristic S.

It should be noted that for S = const Eq. (7) coincides with the von Ka′ rma′n integral equation in repre-
sentation form [4].

We also derive the integral relation for the boundary-layer energy on the basis of the heat-inflow equation [3],
which, in the boundary-layer approximation in the case of the steady-state flow of an incompressible fluid (subsonic
velocities of flow) and with allowance for the temperature equilibrium in the phases, takes the form

∂

∂x
 [ρ1u1 (T∞ − T)] + 

∂

∂y
 [ρ1v1 (T∞ − T)] = 

1

c1
0 
∂q1y

∂y
 − α1 

Qυ
0

c1
0  + α1u1 

Qυ,∞
0

c1
0
U1

 ,

where Qυ
0 = QJ

0 + Qµ
0 + Qυ

0 is the density of the volume sources of heat release due to the Joule and viscous energy
dissipations and to the velocity nonequilibrium of the phases.

For the bubble flow in which the volume content of the gas phase is low (α2 << 1 and ρ1
0 >> ρ2

0), we can dis-
regard the energy dissipation because of the velocity nonequilibrium of the phases. In this case, the density of the vol-
ume heat-release sources will be determined just by the Joule and viscous dissipations, Qυ

0 = QJ
0 + Qµ

0. Outside the
boundary layer, the viscous dissipation is absent and Qµ

0 = 0; then Qυ,∞
0  = QJ,∞

0 . Inside the boundary layer, we have
Qυ

0 = QJ
0 + Qµ

0; by virtue of the law of conservation of electric current, QJ,∞
0  = QJ

0 = const and Qµ
0 = µ1(du1

 ⁄ dy)2.
Therefore, the last expression will be rewritten as

∂

∂x
 [ρ1u1 (T∞ − T)] + 

∂

∂y
 [ρ1v1 (T∞ − T)] = 

1

c1
0
 
∂q1y

∂y
 − α1 

QJ
0

c1
0  



1 − 

u1

U1




 − 
α1

c1
0

 µ1 




du1

dy





2

 .

Let us integrate this equation across the thermal boundary layer between the limits from y = 0 to y = δt(x), taking into
account the conditions at its boundaries:

y = 0 :   u1 = v1 = 0 ,   T = Tw ,   q1y = − λef 
∂T

∂y
 ;

y = δt :   u1 = U1 ,   v1 = 0 ,   
∂T

∂y
 = 0 ,   

∂u1

∂y
 = 0 ,

where λef is the effective thermal conductivity of the two-phase flow, and pass to excess temperatures, having set Θ
= T∞(x) − T(x) and θ = T(x) − Tw. Then the integral relation will take the form

dδt
∗∗

dx
 +  δt

∗∗
 + δt

∗ 
  

QJ
0

ρ1
0
c1

0
U1Θ

 + δt
∗∗

 
U1
′

U1

 = 
λef

ρ1
0
c1

0
U1Θ

 
∂θ

∂y








y=0

 − α1 
µ1

ρ1
0
c1

0
U1Θ

  ∫ 
0

δt

 




du1

dy





2

 dy , (9)

where

λef = λ1
0
 










1 + 
3

2
 

α2

1 − 
3√9π16

 α2
2

 










−1

 C λ1
0
 



1 − 

3

2
 α2




 .
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and λ1
0 is the true thermal conductivity of the carrier phase [6].

In the approximate method of calculation of the boundary layer, we prescribe the velocity and temperature
profiles to integrate Eqs. (7) and (9). In the case of the dynamic boundary layer the profiles of phase velocities can
be found with the following conditions at its boundary:

y = 0 :   u1 = 0 ,   u2 = 0 ,   
∂2

u1

∂y
2  = 0 ,   

∂2
u2

∂y
2  = 0 ;

y = δ (x) :   u1 = U1 ,   u2 = U2 ,   
∂u1

∂y
 = 0 ,   

∂u2

∂y
 = 0 ,

which leads to the expressions [2]

u1

U1
 = 

3

2
 
y

δ
 − 

1

2
 




y

δ




3

 ,   
u2

U2
 = 

3

2
 
y

δ
 − 

1

2
 




y

δ




3

 . (10)

We determine the temperature profile satisfying the conditions at the boundaries of the thermal boundary
layer:

y = 0 :   θ = 0 ,   
∂2θ

∂y
2

 = 0 ;   y = δt (x) :   θ = Θ ,   
∂θ

∂y
 = 0 ,

which yields

θ
Θ

 = 
3
2

 
y
δt

 − 
1
2

 


y
δt





3

 . (11)

For the prescribed profiles (10) and (11) and parameters U′ and S′ the system of Eqs. (7) and (9) can be in-
tegrated numerically. In the case of gradient-free flow past the plate this system allows an elementary solution.

Indeed, having set U′ = 0 and S′ = 0 in Eqs.(7) and (9), we rewrite them in the form

dδ∗∗

dx
 = 

µ1

ρ1
0
U1

2 
∂u1

∂y








y=0

 = 
3

2
 
µ1

ρ1
0
U1

 
1

δ (x)
 , (12)

dδt
∗∗

dx
 + δt

∗∗
 + δt

∗ 
  

QJ
0

ρ1
0
c1

0
U1Θ

 + α1 
µ1U1

ρ1
0
c1

0Θ
 δ (x) = 

λef

ρ1
0
c1

0
U1Θ

 
∂θ

∂y








y=0

 . (13)

In Eq. (13), it is assumed that δt < δ.
Let us consider first the solution of (12) for the dynamic boundary layer. The velocity profiles (10) enable us

to compute the momentum thickness and with the condition ρ∗  > 1 they yield (η = y/δ)

δ∗∗  = δ1
∗∗

 + 
S

2

ρ∗
 δ2
∗∗

 C δ1
∗∗

 = α1δ (x) ∫ 
0

1




3
2

 η − 
1
2

 η3


 

1 − 

3
2

 η + 
1
2

 η3


 dη = 

39
280

 α1δ (x) .

Substituting this thickness into Eq. (12) and taking into account that δ = 0 for x = 0, we obtain the solution
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δ (x) = √1 + α2

1 − α2
 √280

13
 
ν1

0
x

U1
 . (14)

Here α1 = 1 − α2 = const.
When α2 = 0, the solution (14) becomes its single-phase analog [2]. It should be noted that (14) does not in-

volve the forces responsible for the velocity nonequilibrium. The reason is that the information on interphase interac-
tion is determined by the momentum thickness of the dispersed phase δ2

∗∗ , which becomes insignificant because of the
high value of the parameter ρ∗ . Thus, the solution (14) can be called inertialess.

Figure 1 shows plots of the thickness of single-phase and two-phase dynamic boundary layers as a function
of the reduced length of the plate. The thickness of the two-phase layer was calculated for a gas content of α2 = 10%;
the parameters of the liquid phase corresponded to those of water at a temperature of 50oC.

The given plots show that the dispersed phase in the carrier flow causes an increase in the thickness of the
dynamic boundary layer.

In integrating the equation of the thermal boundary layer, we must take into account two possibilities: the
thermal boundary layer is submerged in the dynamic one (δt < δ) and the thermal layer is thicker than the dynamic
one (δt > δ).

Let us consider the first case where Pr = ν1
0ρ1

0c1
0 ⁄ λ1

0 ≥ 1, i.e., ordinary liquids.
If we introduce the criteria of the problem

Po = 
QJ

0
L

λ1
0
 
Θ

L

 ,   Pe = 
U1L

λ1
0

ρ1
0
c1

0

 ,   Ec = 
U1

2

c1
0Θ

 ,   Re = 
ρ1

0
U1L

µ1
0  ,

Eq. (13) takes the form

dδt
∗∗

dx
 +  δt

∗∗
 + δt

∗ 
  

Po

Pe
 
1

L
 + α1 (1 + α2) 

Ec

Re
 

L

δ (x)
  ∫ 

0

δt
 ⁄ δ

 




d

dη
 




u1
U1









2

 dη = 
3

2
 
1 − 

3
2

 α2

Pe
 

L

δt (x)
 . (15)

Employing the velocity (10) and temperature profiles (11), we calculate the thicknesses and the integral involved in
this expression.

Let δt
 ⁄ δ = h < 1 and η = y ⁄ δ; then

  ∫ 
0

δt
 ⁄ δ

 




d

dη
 




u1
U1









2

 dη = ∫ 
0

h




d

dη
 




3

2
 η − 

1

2
 η3








2

 dη = 
9

4
 h − 

3

20
 h

3
 + 

9

20
 h

5
 ,

Fig. 1. Reduced thickness δ ⁄ L of the dynamic boundary layer vs. reduced
length of the plate ζ = x ⁄ L: 1) single-phase boundary layer; 2) two-phase
boundary layer.
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δt
∗∗

 = ∫ 
0

δt

 α1 
u1
U1

 



1 − 

θ
Θ



 dy = 

3

20
 α1δh

2
 



1 − 

1

14
 h

2


 ,   δt

∗
 = ∫ 

0

δt

 α1 



1 − 

θ
Θ



 dy = α1δh 




1 − 

3

4
 h + 

1

8
 h

2


 .

Substituting these expressions into the equation of the thermal boundary layer (15) and taking into account the solution
(14), we obtain

dh

dζ
 = 

13

280
 
1 − α2

1 + α2
 

1

Pr
 

1 − 
3
2

 α2

ζh (ζ) Ψ (h)
 − 

3

40
 
1 − α2

ζΨ (h)
 − (1 − α2) 

3
20

 Φ (h) + χ (h)

Ψ (h)
 
Po

Pe
 − 

65

1680
 (1 − α2)

2
 

Ec

Ψ (h) ζ
 , (16)

where ζ is the reduced longitudinal coordinate and the functions of h are defined by the following expressions:

Φ (h) = h
2
 



1 − 

h
2

14




 ,   Ψ (h) = 2h 




1 − 

h
2

7




 ,   χ (h) = h 




1 − 

3
4

 h + 
h

2

8




 .

We find more exact conditions than Pr ≥ 1 [2] that ensure the condition of "submergence" of the thermal
boundary layer in the dynamic one.

Indeed, if the right-hand side of Eq. (16) is negative at the point ζ = 0, the function h(ζ) will become de-
creasing. Having redefined it for x = 0, i.e., having set h(0) = 1, we obtain the condition sought:

Pr > Prcr1 = 
13
21

 
1

1 + α2
 

1
1 + 0.5 Ec

 .

Let us consider integration of the equation of the thermal boundary layer (15) when its thickness is higher
than the thickness of the dynamic layer, i.e., δt ≥ δ. In this case we must take into account that u1 = U1 for y > δ; then
for the boundary-layer thicknesses we have

δt
∗∗

 = ∫ 
0

δt

 α1 
u1

U1

 



1 − 

θ

Θ




 dy = α1δ 




− 

3

8
 + 

3

8
 h + 

3

20
 
1

h
 + 

29

1120
 
1

h
3




 ,

δt
∗
 = ∫ 

0

δt

 α1 



1 − 

u1

U1




 dy = α1 ∫ 

0

δ



1 − 

u1

U1




 dy = 

3

8
 α1δ .

Taking into account that

 ∫ 
0

δ




d

dy
 




u1
U1









2

 dy = 
6

5
 

1

δ (x)
 ,

we reduce the equation of the thermal boundary layer to the form

 
dh
dζ

 = 
13
280

 
1 − 

3
2

 α2

1 + α2
 

1
Pr

 
1

ζh (ζ) Ψ (h)
 − 





3
8

 + Φ (h)

 


1
2

 + 
Po
Pe

 ζ


Ψ (h) ζ
 − 

39
700

 (1 − α2) 
Ec

Ψ (h) ζ
 , (17)

where the functions of h are defined by the equalities

Φ (h) = − 
3

8
 + 

3

8
 h + 

3

20
 
1

h
 + 

29

1120
 

1

h
3 ,   Ψ (h) = 

3

8
 − 

3

20
 

1

h
2 − 

87

1120
 

1

h
4 .
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By letting the derivative be positive at the point ζ = 0 and redefining the function h in the manner mentioned above,
we can find the conditions which must be satisfied by the criteria of the problem for the thermal layer to be thicker
than the dynamic one (δt > δ):

Pr < Prcr2 = 
26

147
 

1 − 
3
2

 α2

1 + α2

1 + 2 
Po
Pe

 + 0.2 Ec
 .

Figure 2 gives the solutions of Eqs. (16) and (17) for two liquids: curve 1 corresponds to water at a tempera-
ture of 50oC, while curve 2 corresponds to liquid gallium at a temperature of 100oC with a volume content of air
bubbles of α2 = 10%.

The function h(ζ) was calculated for Po = Ec = 0 and Pr = 6.18 for water and for Pr = 0.02, Θ = 100oC,
Pe = 1.12⋅105, Ec = 3.9⋅10−7, and Po = 7.69 for gallium.

From the given plots it is clear that the condition of "submergence" of the thermal layer holds throughout the
plate length in water, whereas the inverse condition holds in liquid gallium. The volume heat-release sources occurring
in the flow of the liquid metal exert a slight influence on the quantity h for the indicated criteria of the problem. We
can disregard the effects of the heat release Qυ in their wide range. The critical Prandtl number was Prcr1 = 0.563 for
curve 1 and Prcr2 = 0.167 for curve 2.

Fig. 2. Dependence of h = δt
 ⁄ δ on the reduced length of the plate ζ in the

two-phase boundary layer: 1) water (the scale of the ordinate axis is enlarged
10 times); 2) liquid gallium.

Fig. 3. Reduced thickness δ ⁄ L of the thermal (curve 1) and dynamic (curve 2)
boundary layers vs. reduced length of the plate ζ (the dynamic layer is sub-
merged in the thermal one).

Fig. 4. Local coefficient of heat transfer β/1000 (1) and Nusselt number
Nux/10 (2) in the two-phase, liquid-metal flow vs. local Reynolds number.
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Figure 3 gives plots of the reduced thickness δ ⁄ L of the thermal (curve 1) and dynamic (curve 2) boundary
layers for the two-phase, liquid-metal flow of gallium for a volume gas content of 10% and the parameters indicated
above. The condition of "submergence" of the dynamic layer is ensured by small Prandtl numbers in liquid-metal
flows [2].

Figure 4 gives plots of the local coefficient of heat transfer β (W/(m2⋅oC)) and Nusselt number Nux =
βx ⁄ λ1

0 as functions of the local Reynolds number Rex = U1x ⁄ ν1
0 which corresponds to the thermal boundary layer in

Fig. 3. The character of change of the local heat-transfer coefficient is the same as for the analogous dependence in
the single-phase liquid but the presence of the gas phase leads to a certain decrease in β.

It should be noted that the stability and convergence of the numerical algorithms of solution of the equation
of the thermal boundary layer are disturbed on the interval of Prandtl numbers Prcr2 < Pr < Prcr1.

The obtained equations of the thermal boundary layer can be employed in calculating the hydrodynamics and
heat exchange in two-phase liquid-metal flows of certain power plants.

NOTATION

vi, vector of the velocity of the ith phase; x, y, Cartesian coordinates; ρi and ρi
0, reduced and true densities

of the ith phase respectively; αi, volume content of the ith phase; f1x = j1B; reduced density of the electromagnetic
force; j1 and j1

0, reduced and true densities of the electric current; j1 = α1j1
0; B = const, magnetic-field induction;

F12x, longitudinal projection of the force of interaction between the phases because of velocity nonequilibrium; Ui and
ui, longitudinal velocities of the phases outside the boundary layer and inside it; vi, transverse velocity of the ith phase
within the boundary layer; τ1 and τ1w, viscous-friction stresses in the carrier phase and on the wall; δ∗ , displacement
thickness of the boundary layer; δ∗∗ , momentum thickness for the entire mixture; δ and δt, thickness of the dynamic
and thermal boundary layers; ci

0, true specific mass heat of the ith phase of the flow at constant pressure; Qυ
0, density

of the volume heat-release sources; T and T∞, temperatures of the flow inside the boundary layer and outside it; q1y,
heat-flux density, normal to the wall, in the liquid phase; λ, thermal conductivity; Θ and θ, excess temperatures; η,
ζ, reduced coordinates; µ1

0 and ν1
0, true coefficients of dynamic and kinematic viscosities of the carrier phase; Po, Pe,

Ec, Re, and Pr, Pomerantsev, Pe′clet, Eckert, Reynolds, and Prandtl numbers; L, characteristic dimension of the plate;
h, dimensionless thickness of the thermal boundary layer; Φ(h), Ψ(h), and χ(h), functions of the boundary layer. Sub-
scripts and superscripts: i, phase index taking on the following values: 1, liquid (carrier) phase and 2, dispersed phase
(gas bubbles); ∞, parameters of the flow outside the boundary layer; ef, effective value; w, parameters on the wall; cr,
critical; J, Joule; t, thermal; 0, true value; x and y, projections onto the longitudinal and transverse axes of the
Cartesian coordinates.
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